- -20%
Uczenie maszynowe w Pythonie dla każdego
Mark Fenner
9788328364257
Sztuczna inteligencja i uczenie maszynowe rozwijają się z niezwykłą dynamiką i znajdują coraz więcej różnorodnych zastosowań w niemal wszystkich branżach. Ten spektakularny postęp jest silnie związany z osiągnięciami w świecie sprzętu i...
Polityka bezpieczeństwa
Zasady wysyłki
Regulamin księgarni
Sztuczna inteligencja i uczenie maszynowe rozwijają się z niezwykłą dynamiką i znajdują coraz więcej różnorodnych zastosowań w niemal wszystkich branżach. Ten spektakularny postęp jest silnie związany z osiągnięciami w świecie sprzętu i oprogramowania. Obecnie do uczenia maszynowego używa się wielu języków programowania, takich jak R, C, C++, Fortran i Go, jednak najpopularniejszym wyborem okazał się Python wraz z jego specjalistycznymi bibliotekami. Znajomość tych bibliotek i narzędzi umożliwia tworzenie systemów uczących się nawet tym osobom, które nie dysponują głęboką wiedzą z dziedziny matematyki.
Ta książka jest przeznaczona dla każdego, kto choć trochę zna Pythona i chce nauczyć się uczenia maszynowego. Zagadnienia matematyczne zostały tu zaprezentowane w minimalnym stopniu, za to więcej uwagi poświęcono koncepcjom, na których oparto najważniejsze i najczęściej używane narzędzia oraz techniki uczenia maszynowego. Następnie pokazano praktyczne zasady implementacji uczenia maszynowego z wykorzystaniem najdoskonalszych bibliotek i narzędzi Pythona. Opisano używane dziś komponenty systemów uczących się, w tym techniki klasyfikacji i regresji, a także inżynierię cech, która pozwala przekształcać dane na użyteczną postać. Przeanalizowano liczne algorytmy i najczęściej stosowane techniki uczenia maszynowego. Pokrótce przedstawiono modele grafowe i sieci neuronowe, w tym sieci głębokie, jak również połączenie tych technik z bardziej zaawansowanymi metodami, przydatnymi choćby w pracy na danych graficznych i tekstowych.
Ta książka jest przeznaczona dla każdego, kto choć trochę zna Pythona i chce nauczyć się uczenia maszynowego. Zagadnienia matematyczne zostały tu zaprezentowane w minimalnym stopniu, za to więcej uwagi poświęcono koncepcjom, na których oparto najważniejsze i najczęściej używane narzędzia oraz techniki uczenia maszynowego. Następnie pokazano praktyczne zasady implementacji uczenia maszynowego z wykorzystaniem najdoskonalszych bibliotek i narzędzi Pythona. Opisano używane dziś komponenty systemów uczących się, w tym techniki klasyfikacji i regresji, a także inżynierię cech, która pozwala przekształcać dane na użyteczną postać. Przeanalizowano liczne algorytmy i najczęściej stosowane techniki uczenia maszynowego. Pokrótce przedstawiono modele grafowe i sieci neuronowe, w tym sieci głębokie, jak również połączenie tych technik z bardziej zaawansowanymi metodami, przydatnymi choćby w pracy na danych graficznych i tekstowych.
9788328364257
6 szt.
Opis
- Autor
- Mark Fenner
- Liczba stron
- 544
- Format
- 237x168 mm
- Rok wydania
- 2020
- Oprawa
- broszurowa
- ISBN
- 9788328364257